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Abstract

An exact power-series solution for free vibration of a rotating inclined Timoshenko beam is developed. It is shown that

both the extensional deformation and the Coriolis force will have significant influence on the natural frequencies of the

rotating beam when the dimensionless rotating extension parameter is large. Without numerical analysis, several general

qualitative relations among the inclination angle, the hub radius and the natural frequencies of the beam are revealed. In

addition, the influence of extensional deformation in the centrifugal stiffening force term on the natural frequencies

evaluated by the Timoshenko and the Euler beam theories is also studied and compared.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating beams are of importance in engineering applications such as turbine blades, helicopter rotors,
airplane propellers, robot manipulators and various cooling fans. Interesting reviews about the subject can be
found in the papers given by, amongst others, Leissa [1], Ramamurti et al. [2] and Rao [3].

In the vibration analysis of rotating blades, the structures with large aspect ratio are often modeled as beams
vibrating in flexural motion. The influences of various parameters, such as hub radius, tip mass, rotating
speed, shear deformation and rotary inertia, Coriolis force, setting angle, taper ratio, pretwisted angle and
elastic root restraints on the natural frequencies of flexural vibration of a rotating beam have been studied by
many investigators [4–14]. Simo and Quoc [10] showed that appropriate account of the influence of centrifugal
force on bending stiffness requires the use of a geometrically nonlinear beam theory. Lin and Hsiao [11]
studied the coupling effects of extensional deformation and Coriolis force on the natural frequencies of a
Timoshenko beam. In all these studies, the steady-state normal force (or centrifugal force) was used to
examine the centrifugally stiffened effect. However, the extensional deformation was not considered in the
centrifugal stiffening force term, even though it might have been considered in the governing differential
equations.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Besides, although the vibration of a rotating beam has been extensively studied, little study on the vibration
of a rotating beam with inclination angle is found. Lee [6] studied the vibration on an inclined rotating
cantilevered Euler beam with tip mass using a numerical method. In his study, the extensional deformation
and the Coriolis force were not considered.

In this paper, based on the Timoshenko beam theory, the free vibration of a rotating uniform beam with
inclination angle is investigated. The extensional deformation and the Coriolis force effect are both taken into
account. The beam considered is doubly symmetric so that the centroidal axis and the neutral axis are
coincident. By utilizing the Hamilton’s principle and the consistent linearization of a geometrically nonlinear
beam theory [10], three coupled governing differential equations with variable coefficients are derived. In
general, the exact solutions of the system are not available. This type of problem is mainly solved by
approximated methods such as the Rayleigh–Ritz method [7], the finite element method [8], the Galerkin
method [12], and the finite difference method [13,14].

In this study, two explicit relations are developed. These two relations explicitly express the centroidal axial
displacement parameter and the rotating angle in terms of the transverse displacements parameter,
respectively. With these two relations, the coupled characteristic differential equations can be decoupled and
reduced to a sixth-order ordinary differential equation with variable coefficients. In this way, by Lee and
Kuo’s work [15], the exact series solution of the system can be developed.

It is known that numerical results can only provide partial qualitative conclusions. In addition, it requires a
wide range of data to achieve this. In this paper, several general qualitative relations among the inclination
angle, the hub radius and the natural frequencies of the beam are revealed without numerical analysis. The
general qualitative relations are also verified using some numerical illustrations. With regard to the numerical
analysis, four different approaches are presented and a dimensionless rotating extension parameter is
introduced to illustrate the influence of the Coriolis force and the extensional deformation on the natural
frequencies of the beam system. In addition, the influence of extensional deformation in the centrifugal
stiffening force term on the natural frequencies evaluated by both the Timoshenko and the Euler beam
theories is also studied.
2. Dynamic system

Consider the free in-plane vibration of a rotating inclined Timoshenko beam, as shown in Fig. 1. The beam
is mounted with an inclination angle y on a hub with radius rh. It rotates with a constant angular velocity O.
There are two coordinate systems, O�X0Y0 and A�X1Y1, used for the configuration. The beam deflection is
confined in the X1–Y1 plane only. The centroidal axis of the beam is coincident with X1 axis. Let P1 (see Fig. 1)
be an arbitrary point in the beam element, and P be the point corresponding to P1 on the centroidal axis. The
position vector of a point P1, after deformation, can be expressed as

OP1

��!
¼ ½rh þ ðxþ u� rfÞ cos y� ðvþ rÞ sin y�~i þ ½ðxþ u� rfÞ sin yþ ðvþ rÞ cos y�~j, (1)

where u and v are the centroidal axial and transverse displacements of point P, respectively, x is the distance
from the origin point A to the position of point P and r is the distance between point P and P1 in the
undeformed configuration, f is the angle of rotation due to bending, and ~i;~j are unit vectors in the O�X0Y0

coordinate system. The velocity of point P1 is

vp
!
¼

du

dt
� r

df
dt

� �
cos y�

dv

dt
sin y� O½ðxþ u� rfÞ sin yþ ðvþ rÞ cos y�

� �
~i

þ
du

dt
� r

df
dt

� �
sin yþ

dv

dt
cos yþ O½rh þ ðxþ u� rfÞ cos y� ðvþ rÞ sin y�

� �
~j. ð2Þ

The kinetic energy T and the potential energy U of the rotating beam are, respectively,

T ¼
1

2

Z L

0

rA vp
!
� vp
!� �

dx (3)
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Fig. 1. Geometry and coordinate system of a rotating inclined beam.
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and

U ¼
1

2

ZZ
E�2 dAdxþ

1

2

ZZ
kGg2 dAdx, (4)

where r, A, L, E and G are the mass per unit volume, the cross-sectional area, the length, the Young’s modulus
and the shear modulus of the beam, respectively. k is the shear correction factor. g is the shear strain, which is
the angle of distortion due to shear. The nonlinear normal strain e and the shear strain gmay be approximated
[11] by

� ¼
qu

qx
� r

qf
qx
þ

1

2

qv

qx

� �2

; g ¼
qv

qx
� f. (5)

It should be noted that in order to explain the influence of the centrifugal stiffening force on the bending
stiffness in an appropriate manner, the nonlinear term in the normal strain, Eq. (5), is required [10].

By utilizing the Hamilton’s principle and the consistent linearization of the nonlinear beam theory [10], the
governing differential equations for the rotating inclined Timoshenko beam are

EA
q2u

qx2
þ rAO2u� rA

q2u
qt2
þ 2rAO

qv

qt
¼ �rAq2ðxþ rh cos yÞ, (6a)

kGA
q2v
qx2
�

qf
qx

� �
þ

q
qx

Np

qv

qx

� �
þ rAO2v� rA

q2v

qt2
� 2rAO

qu

qt
¼ 0, (6b)

EI
q2f
qx2
þ rIO2f� rI

q2f
qt2
þ kGA

qv

qx
� f

� �
¼ 0, (6c)
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where I is the second moment of area of the beam cross-section. The last terms in the left-hand side of Eqs.
(6a)–(6b) are the Coriolis forces in the axial and the transverse directions, respectively.

The associated boundary conditions are

at x ¼ 0 : v ¼ 0, (7a)

f ¼ tan y, (7b)

u ¼ 0 (7c)

and

at x ¼ L : kGA
qv

qx
� f

� �
¼ 0, (8a)

EI
qf
qx
¼ 0, (8b)

EA
qu

qx
¼ 0. (8c)

Here, Np ¼ EAðdu=dxÞ is the centrifugal stiffening force term and is used to be considered as the steady-
state normal force or the centrifugal force [4–16]. It is determined in the following.

For steady-state deformations, the differential equation (6a) is reduced to

EA
d2u

dx2
þ rAO2u ¼ �rAO2ðxþ rh cos yÞ. (9)

The solution that satisfies the associated boundary conditions (7c) and (8c) is

uðxÞ ¼ rh cos y cos
l
L

xþ
L

l cos l
þ rh cos y tan l

� �
sin

l
L

x� ðxþ rh cos yÞ, (10)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðr=EÞ

p
OL is defined as a dimensionless rotating extension parameter. As a result, the axial steady-

state normal force is

Np ¼ EA
du

dx
EA �

l
L

rh cos y sin
l
L

xþ
1

cos l
þ

lrh cos y tan l
L

� �
cos

l
L

x� 1


 �
. (11)

If l is relatively small and one just retains two terms in the power-series approximation of the above
trigonometric functions, it is reduced to

Npc ¼ rAO2½rhðL� xÞ cos yþ 1
2
ðL2 � x2Þ�. (12)

It should be mentioned that this Npc is equal to the axial centrifugal force of the rotating beam when the
extensional deformation is ignored. The difference between Np and Npc will increase as the dimensionless
rotating extension parameter l is increased.

3. Reduced governing differential equations

The displacements of the beam can be considered as the superposition of the static displacements reacted by
the centrifugal force and the dynamic displacements generated from the beam vibration. They are

u ¼ usðxÞ þ ud ðx; tÞ; v ¼ vsðxÞ þ vdðx; tÞ and f ¼ fsðxÞ þ fdðx; tÞ. (13)

Here us, vs and fs are the static displacements. They satisfy the following three differential equations:

EA
q2us

qx2
þ rAO2us ¼ �rAO2ðxþ rh cos yÞ, (14a)
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kGA
q2vs

qx2
�

qfs

qx

� �
þ

q
qx

Np
qvs

qx

� �
þ rAO2vs ¼ 0, (14b)

EI
q2fs

qx2
þ rIO2fs þ kGA

qvs

qx
� fs

� �
¼ 0. (14c)

The associated boundary conditions are

at x ¼ 0 : vs ¼ 0; fs ¼ tan y; us ¼ 0, (15a)

at x ¼ L : kGA
qvs

qx
� fs

� �
¼ 0; EI

qfs

qx
¼ 0; EA

qus

qx
¼ 0. (15b)

Subsequently, ud, vd and fd are the dynamic displacements. They satisfy the following three differential
equations:

EA
q2ud

qx2
þ rAO2ud � rA

q2ud

qt2
þ 2rAO

qvd

qt
¼ 0, (16a)

kGA
q2vd

qx2
�

qfd

qx

� �
þ

q
qx

Np

qvd

qx

� �
þ rAO2vd � rA

q2vd

qt2
� 2rAO

qud

qt
¼ 0, (16b)

EI
q2fd

qx2
þ rIO2fd � rI

q2fd

qt2
þ kGA

qvd

qx
� fd

� �
¼ 0. (16c)

The associated boundary conditions are

at x ¼ 0 : vd ¼ 0; fd ¼ 0; ud ¼ 0, (17a)

at x ¼ L : kGA
qvd

qx
� fd

� �
¼ 0; EI

@fd

@x
¼ 0; EA

@ud

@x
¼ 0. (17b)

In the free vibration analysis, the static displacements will have no influence on the natural frequencies of
the beam. Therefore, the governing differential equations of the system are reduced to Eqs. (16a)–(16c). It can
be observed that if the Coriolis force is not considered, the centroidal axial displacement will be independent
with the other two displacements.

4. Governing characteristic differential equations

For time-harmonic vibration of a rotating inclined beam with angular frequency o, one assumes

vdðx; tÞ ¼ ~V ðxÞeiot; udðx; tÞ ¼ ~UðxÞeiot and fdðx; tÞ ¼
ffd ðxÞe

iot. (18)

In terms of the following dimensionless parameters

V̄ ¼
~V

L
; Ū ¼

~U

L
; f̄ðxÞ ¼ ffdðxÞ; x ¼

x

L
; L ¼

ffiffiffiffiffiffiffi
rA

EI

r
oL2,

Lz ¼ L

ffiffiffiffi
A

I

r
; m ¼

rh

L
; a ¼ Lzl ¼

ffiffiffiffiffiffiffi
rA

EI

r
OL2; Np ¼

Np

rAO2L2
,

Npc ¼
Npc

rAO2L2
; ks ¼ k

G

E
, ð19Þ

the governing characteristic differential equations (16a)–(16c) can be expressed as

Ū
00
þ

L2 þ a2

L2
z

Ū þ
2iLa
L2

z

V̄ ¼ 0, (20a)
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ksL
2
z V̄

00
� f̄

0
� 

þ a2 NpV̄
0� �0
þ ðL2 þ a2ÞV̄ � 2iLaŪ ¼ 0, (20b)

f̄
00
þ

L2 þ a2

L2
z

f̄þ ksL
2
zðV̄

0
� f̄Þ ¼ 0, (20c)

where the prime denotes the derivative with respect to the dimensionless variable x. The dimensionless axial
steady-state normal force is

Np ¼ Ca sin lxþ Cb cos lx�
1

l2
, (21)

where Ca and Cb are, respectively,

Ca ¼ �
m
l
cos y and Cb ¼

1

l2 cos l
þ

tan l
l

m cos y. (22)

The other dimensionless axial steady-state normal force neglecting extensional deformation is

Npc ¼ mð1� xÞ cos yþ
1

2
ð1� x2Þ. (23)

The associated dimensionless boundary conditions are

at x ¼ 0 : V̄ ¼ 0, (24a)

f̄ ¼ 0, (24b)

Ū ¼ 0 (24c)

and

at x ¼ 1 : V̄
0
� f̄ ¼ 0, (25a)

f̄
0
¼ 0, (25b)

Ū
0
¼ 0. (25c)

4.1. Explicit relations

Equations (20a)–(20c) are three coupled differential equations. The coefficient of the second term in Eq.
(20b) is a variable function. After taking a series of differentiation and variable cancellation operations on
these equations, one can explicitly expressed variables f and U in terms of variable V̄

Ū ¼ z11V̄ þ z12V̄
0
þ z13V̄

00
þ z14V̄

000
þ z15V̄

ð4Þ
þ z16V̄

ð5Þ
, (26)

f̄ ¼ z21V̄ þ z22V̄
0
þ z23V̄

00
þ z24V̄

000
þ z25V̄

ð4Þ
þ z26V̄

ð5Þ
, (27)

where zij are listed in Appendix A.

4.2. Uncoupled characteristic differential equations

After differentiating relation (27) once and substituting it and relation (26) back to Eq. (20b), the coupled
governing equations (20a)–(20c) are uncoupled and reduced to a sixth-order ordinary differential equation
with variable coefficients, in terms of the variable V̄

a6V̄
ð6Þ
þ a5V̄

ð5Þ
þ a4V̄

ð4Þ
þ a3V̄

000
þ a2V̄

00
þ a1V̄

0
þ a0V̄ ¼ 0, (28)

where the corresponding coefficients ai are listed in Appendix B.
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The associated boundary conditions are

at x ¼ 0 : b16V̄
ð5Þ
þ b15V̄

ð4Þ
þ b14V̄

000
þ b13V̄

00
þ b12V̄

0
þ b11V̄ ¼ 0, (29a)

b26V̄
ð5Þ
þ b25V̄

ð4Þ
þ b24V̄

000
þ b23V̄

00
þ b22V̄

0
þ b21V̄ ¼ 0, (29b)

b36V̄
ð5Þ
þ b35V̄

ð4Þ
þ b34V̄

000
þ b33V̄

00
þ b32V̄

0
þ b31V̄ ¼ 0, (29c)

at x ¼ 1 : b46V̄
ð5Þ
þ b45V̄

ð4Þ
þ b44V̄

000
þ b43V̄

00
þ b42V̄

0
þ b41V̄ ¼ 0, (30a)

b56V̄
ð5Þ
þ b55V̄

ð4Þ
þ b54V̄

000
þ b53V̄

00
þ b52V̄

0
þ b51V̄ ¼ 0, (30b)

b66V̄
ð5Þ
þ b65V̄

ð4Þ
þ b64V̄

000
þ b63V̄

00
þ b62V̄

0
þ b61V̄ ¼ 0, (30c)

where the coefficients bij are listed in Appendix C.

4.3. Without Coriolis force effect

If one neglects the Coriolis force and retains the extensional deformation effect, the longitudinal motion,
Eq. (20a), is uncoupled to the motions in V̄ and f̄ directions, Eqs. (20b)–(20c). The governing characteristic
differential equations for the flexural motion become

ksL
2
z V̄

00
� f̄

0
� 

þ a2 NpV̄
0� �0
þ ðL2 þ a2ÞV̄ ¼ 0, (31a)

f̄
00
þ

a2 þ L2

L2
z

fþ ksL
2
zðV

0
� f̄Þ ¼ 0 (31b)

and the associated boundary conditions are Eqs. (24a)–(24b), (25a)–(25b)
The explicit relation between f̄ and V̄ is reduced to

f̄ ¼
1

cn3
ksL

2
z þ a2Np

� �
V̄
000
þ 2a2Np

0
V̄
00
þ L2 þ a2 þ k2

s L4
z þ a2Np

00
� 

V̄
0

h i
, (32)

where

cn3 ¼
1

k2
s L4

z � ksðL2 þ a2Þ
.

As a result, the coupled equations can be reduced into a fourth-order ordinary differential equation in terms
of the variable V̄

s4V̄
ð4Þ
þ s3V̄

000
þ s2V̄

00
þ s1V̄

0
þ s0V̄ ¼ 0, (33)

where

s0 ¼ cn4ðL2 þ a2Þ; s1 ¼ cn4a2Np
0
þ a2Np

000
;

s2 ¼ ðL2 þ a2Þðks þ 1Þ þ cn4a2Np; s3 ¼ 3a2Np
0
;

s4 ¼ ksL
2
z þ a2Np;

(34)

where

cn4 ¼
L2 þ a2

L2
z

� ksL
2
z .

The associated boundary conditions can be rearranged accordingly. When the extensional deformation is
ignored, the term Np is replaced byNpc.
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4.4. Euler beam theory

Without consideration of the shear deformation and the rotary inertia effects, the associated governing
differential equations (20a)–(20c) are reduced to

Ū
00
þ

L2 þ a2

L2
z

Ū þ
2iLa
L2

z

V̄ ¼ 0, (35a)

V̄
ð4Þ
� a2 NpV̄

0� �0
� ðL2 þ a2ÞV̄ þ 2iLaŪ ¼ 0. (35b)

When the extensional deformation is neglected and the inclination angle y ¼ 0, Eqs. (35a)–(35b) are the
same as those given in the literature [9,13].

5. Fundamental solutions and frequency equation

The decoupled governing differential equations (28) is a sixth-order ordinary differential equation with
variable coefficients. In general, the exact fundamental solutions are not available. However, if the coefficients
of the differential equation can be expressed in the following polynomial form:

a0 ¼
Xn0
i¼0

cix
i; a1 ¼

Xn1
i¼0

eix
i; a2 ¼

Xn2
i¼0

f ix
i; a3 ¼

Xn3
i¼0

gix
i; a4 ¼

Xn4
i¼0

hix
i,

a5 ¼
Xn5
i¼0

pix
i; a6 ¼

Xn6
i¼0

qix
i, ð36Þ

then the six linearly independent fundamental solutions, wi(x), i ¼ 1–6, of the differential equation (28), which
satisfy the following normalization condition at the origin of the coordinate system

w1ð0Þ w2ð0Þ w3ð0Þ w4ð0Þ w5ð0Þ w6ð0Þ

w01ð0Þ w02ð0Þ w03ð0Þ w04ð0Þ w05ð0Þ w06ð0Þ

w001ð0Þ w002ð0Þ w003ð0Þ w004ð0Þ w005ð0Þ w006ð0Þ

w0001 ð0Þ w0002 ð0Þ w0003 ð0Þ w0004 ð0Þ w0005 ð0Þ w0006 ð0Þ

w
ð4Þ
1 ð0Þ w

ð4Þ
2 ð0Þ w

ð4Þ
3 ð0Þ w

ð4Þ
4 ð0Þ w

ð4Þ
5 ð0Þ w

ð4Þ
6 ð0Þ

w
ð5Þ
1 ð0Þ w

ð5Þ
2 ð0Þ w

ð5Þ
3 ð0Þ w

ð5Þ
4 ð0Þ w

ð5Þ
5 ð0Þ w

ð5Þ
6 ð0Þ

26666666664

37777777775
¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2666666664

3777777775
(37)

can be obtained by extending Lee and Kuo’s work [15] and using the method of Frobenius [16,17]. Otherwise,
the approximated solutions can be obtained by following the algorithm developed by Lee and Kuo [18].

The six independent solutions are assumed to be in the form of

wiðxÞ ¼
X1
n¼0

ki;nx
n; i ¼ 1; 2; . . . ; 6, (38a)

where

for w1ðxÞ : k1;0 ¼ 1; k1;1 ¼ k1;2 ¼ k1;3 ¼ k1;4 ¼ k1;5 ¼ 0,

for w2ðxÞ : k2;1 ¼ 1; k2;0 ¼ k2;2 ¼ k2;3 ¼ k2;4 ¼ k2;5 ¼ 0,

for w3ðxÞ : k3;2 ¼ 1=2; k3;0 ¼ k3;1 ¼ k3;3 ¼ k3;4 ¼ k3;5 ¼ 0,

for w4ðxÞ : k4;3 ¼ 1=6; k4;0 ¼ k4;1 ¼ k4;2 ¼ k4;4 ¼ k4;5 ¼ 0,

for w5ðxÞ : k5;4 ¼ 1=24; k5;0 ¼ k5;1 ¼ k5;2 ¼ k5;3 ¼ k5;5 ¼ 0,

for w6ðxÞ : k6;5 ¼ 1=120; k6;0 ¼ k6;1 ¼ k6;2 ¼ k6;3 ¼ k6;4 ¼ 0. ð38bÞ

It is noted that Eq. (38b) is required for establishing the six normalized fundamental solutions wiðxÞ. Upon
substituting Eqs. (36), (38) into Eq. (28) and collecting the coefficients of like powers of x, the following
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recurrence formula can be obtained:

ki;mþ6 ¼
�1

ðmþ 6Þðmþ 5Þ � � � ðmþ 1Þq0

Xm

j¼1

ðm� j þ 6Þ � � � ðm� j þ 1Þqjki;m�jþ6

" #(

þ
Xm

j¼0

ðm� j þ 5Þ � � � ðm� j þ 1Þpjki;m�iþ5

" #
þ

Xm

j¼0

ðm� j þ 4Þ � � � ðm� j þ 1Þhjki;m�iþ4

" #

þ
Xm

j¼0

ðm� j þ 3Þ � � � ðm� j þ 1Þgjki;m�jþ3

" #
þ

Xm

j¼0

ðm� j þ 2Þðm� j þ 1Þf jki;m�jþ2

" #

þ
Xm

j¼0

ðm� j þ 1Þejki;m�jþ1

" #
þ

Xm

j¼0

cjki;m�j

" #)
: m ¼ 0; 1; . . . ;1. ð39Þ

With this recurrence formula, the six exact normalized fundamental solutions (28) can be generated.
Therefore, the general solution of the system is

V̄ ðxÞ ¼
X6
¼1

ciwiðxÞ, (40)

where cif gare the constants to be determined.
Substituting the general solution into the associated boundary conditions yields a set of equations

½Bij� cif g ¼ 0; i; j ¼ 126, (41)

where

Bij ¼ bij ; i ¼ 1; 2; 3, (42a)

Bij ¼
X6
m¼1

bimw
ðm�1Þ
j ð1Þ; i ¼ 4; 5; 6; j ¼ 1; 2; . . . ; 6. (42b)

The natural frequencies of the rotating inclined beam can now be obtained from the associated frequency
equation.

6. Frequency relations for the systems with different inclination angle and hub radius

The natural frequencies of the system can be numerically determined by the method described in the
previous section. However, most of the numerical results can only provide partial qualitative conclusions. In
addition, it requires a wide range of data to achieve this. In this section, qualitative relations are explored
without numerical analysis. To specify two different systems, subscripts ‘‘a’’ and ‘‘b’’ are added to the
associated physical parameters.

Consider two dynamic systems with the same physical parameters except the inclination angle y and the hub
radius rh. In terms of dimensionless quantities, y and m, one can observe and obtain the following conclusions:
(1)
 If ma cos ya ¼ mb cos yb the governing characteristic differential equations and the associated boundary
conditions of two dynamic systems will be the same. Therefore, the fundamental solutions and the natural
frequencies of two systems will be the same.
(2)
 It is well known that the natural frequencies of a rotating beam will increase as the hub radius is increased
[4]. Combining the fact with the first conclusion, one can also conclude that if the hub radius is not zero
and the inclination angle is increased, the natural frequencies of the dynamic system decrease.
(3)
 If the hub radius is zero, the coefficients in the governing characteristic differential equations and the
associated boundary conditions of the dynamic system will be independent with the inclination
angle. Therefore, the natural frequencies of the dynamic system will be independent with the inclination
angle.
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(4)
Tab

Firs

l

0

0.05

0.1

0.2

0.5

1.0

A: c
If the inclination angle is 7901, the coefficients in the governing characteristic differential equations and
the associated boundary conditions of the dynamic system will be independent with the hub radius.
Therefore, the natural frequencies of the dynamic system will be independent with the hub radius.
It should be mentioned that the conclusions are valid for both systems with and without considering the
Coriolis force effect. In addition, the conclusions are also valid for both Timoshenko and Euler beam systems.
7. Numerical analysis

To illustrate the previous analysis, the accuracy of the numerical analysis and the influence of extensional
deformation and Coriolis effects on the natural frequencies of a rotating inclined Timoshenko beam,
numerical results are presented and discussed. Here, the case considering the extensional deformation in the

centrifugal stiffening force term ðNpÞ and the Coriolis force is referred to as case A. The case considering the

extensional deformation in the centrifugal stiffening force term ðNpÞ and without considering the Coriolis

force is referred to as case B. The case without considering both the extensional deformation ðNpcÞ and the

Coriolis force is referred to as case C. Case C is the one most commonly considered in the existing literature.

The case considering the Coriolis force and without considering the extensional deformation ðNpcÞ is referred

to as case D. Data without special indication are obtained through case A approach.
To illustrate the accuracy of the numerical results in the present analysis, the first six natural frequencies of

the rotating beam, evaluated for case A, are compared with those given by Lin and Hsiao [11] and given in
Table 1. It shows that the results are very consistent as the dimensionless rotating extension parameter l ¼ 0,
0.05 and 0.1, and the natural frequencies increase as l is increased.

In Figs. 2(a) and (b), the influences of the inclination angle on the first five natural frequencies of rotating
inclined beams with different hub radius are shown. One can observe that the frequencies increase as the hub
radius is increased. When the hub radius is zero, the natural frequencies are independent with the inclination
angle. When the hub radius is not zero, the natural frequencies decrease as the inclination angle of the dynamic
system is increased. These observations from the numerical results are consistent with those qualitative
frequency relations revealed in Section 6.

Fig. 3 shows the mode shapes of the first five natural frequencies in Fig. 2 with y ¼ 301, m ¼ 2 and a ¼ 5.
One can observe that the third mode is mainly dominated by the axial deformation. Therefore, the influences
of the inclination angle and the hub radius on the third natural frequencies of beams are almost negligible.
This observation is consistent with that given in Fig. 2.
le 1

t six natural frequencies of a rotating Timoshenko beam (y ¼ 0, m ¼ 0, Lz ¼ 20, ks ¼ 0.32693)

L1 L2 L3 L4 L5 L6

A 3.436 19.139 31.416 46.751 79.240 94.248

# 3.436 19.140 31.416 46.752 79.240 94.248

A 3.454 19.259 31.466 46.906 79.431 94.264

# 3.456 19.260 31.466 46.906 79.432 94.264

A 3.503 19.613 31.618 47.367 80.003 94.313

# 3.506 19.616 31.618 47.368 80.002 94.312

A 3.675 20.982 32.221 49.177 82.266 94.514

# — — — — — —

A 4.680 29.050 36.397 60.773 96.121 97.310

# — — — — — —

A 8.524 47.202 56.206 92.840 111.570 143.778

# — — — — — —

ase A; #: Ref. [11].
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Fig. 2. Influence of inclination angle y and hub radius on the first five natural frequencies of a rotating beam (a ¼ 5, Lz ¼ 35,

ks ¼ 0.32693).
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In Table 2, the first five natural frequencies in Fig. 2 with y ¼ 301, m ¼ 2 and a ¼ 5 are also evaluated via
cases A and C approaches. Since the extensional deformation is not considered in case C approach, the third
natural frequency, which is mainly dominated by the extensional deformation is missed in case C approach.
This analysis shows that the vibration modes mainly dominated by the extensional deformation will be lost in
the pure bending vibration analysis [6–8].

Table 3 shows the first two natural frequencies of rotating inclined beams with the same physical parameters
except the inclination angle and the hub radius. The inclination angle and the hub radius satisfy the relation
ma cos ya ¼ mb cos yb. It can be found that for two dynamic systems with the same physical parameters except
the inclination angle and the hub radius, if the relation ma cos ya ¼ mb cos yb exists, the natural frequencies of
two systems will be the same. The results in this table are consistent with the frequency relation revealed in the
Section 6.

Fig. 4 shows the influence of the inclination angle on the centrifugal stiffening force at the top, the middle
and the root of the beam, respectively. It is obvious that there will be no centrifugal stiffening force at the top
of the beam. It can be observed that the centrifugal stiffening force at the other positions of the beam will
decrease as the inclination angle is increased. The results are consistent with those revealed in Fig. 2.
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Fig. 3. Mode shapes of the first five natural frequencies of a rotating beam (a ¼ 5, Lz ¼ 35, y ¼ 301, m ¼ 2, ms ¼ 0.32693; V̄ ¼ ðxÞ : ‘‘–’’;
f̄ ¼ ðxÞ : ‘‘- - -’’; ŪðxÞ : ‘‘— -—’’).

Table 2

First five natural frequencies evaluated via two different approaches (y ¼ 301, m ¼ 2, a ¼ 5, Lz ¼ 35, ks ¼ 0.32693)

Approach Natural frequency

L1 L2 L3 L4 L5

Case A 8.9224 30.3892 55.6901 66.6180 113.6236

Case C 9.0207 30.4013 # 66.5798 113.5631
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Fig. 5 shows that when the extensional deformation is ignored, the centrifugal stiffening force Npc will be
independent with the dimensionless rotating extension parameter l. Otherwise, as the dimensionless rotating
extension parameter is increased, the centrifugal stiffening force Np increases.

Fig. 6 shows the influence of the dimensionless rotating extension parameter l, the extensional deformation
and the Coriolis force on the first two natural frequencies of a rotating beam. The following conclusions can
be observed:
1.
 The natural frequencies of the beam considering the Coriolis force effect will be smaller than those of the
beam without considering the Coriolis force effect. This conclusion is consistent with those in the existing
literature [11].
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Fig. 4. Influence of the inclination angle on the centrifugal stiffening force (m ¼ 1, l ¼ 0.3).

Table 3

First two natural frequencies of rotating inclined beams with different m and y (Lz ¼ 30)

a L1 m ¼ 1, cos y ¼ 1 m ¼ 2, cos y ¼ 0.5

Case A Case B Case A Case B

0 L1 3.4798 3.4798 3.4798 3.4798

L2 20.5892 20.5892 20.5892 20.5892

1 L1 3.7173 3.7204 3.7173 3.7204

L2 20.9100 20.9134 20.9100 20.9134

2 L1 4.3435 4.3592 4.3435 4.3592

L2 21.8431 21.8573 21.8431 21.8573

3 L1 5.2054 5.2453 5.2054 5.2453

L2 23.3125 23.3460 23.3125 23.3460

4 L1 6.1841 6.2693 6.1841 6.2693

L2 25.2207 25.2843 25.2207 25.2843

5 L1 7.2153 7.3724 7.2153 7.3724

L2 27.4718 27.5794 27.4718 27.5794
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2.
 The natural frequencies of a rotating beam generally increase as the dimensionless rotating extension
parameter l is increased. It is due to the fact that as the dimensionless rotating extension parameter l is
increased, the centrifugal stiffening force increases. However, if l is large enough (for instance, see the curve
near l ¼ 1 obtained for case D), the effect of the Coriolis force and the centrifugal force term rAO2vd in Eq.
(13b) will be probably larger than that of the centrifugal stiffening force, and consequently the natural
frequencies will decrease.
3.
 The natural frequencies of the beam considering the extensional deformation in the centrifugal stiffening
force term are greater than those of the beam without considering the extensional deformation
in the centrifugal stiffening force term. It is due to the fact that the centrifugal stiffening force of
a rotating beam with extensional deformation will be greater than that without extensional deformation,
i.e. NpXNpc.
4.
 Both the extensional deformation and the Coriolis force will have very significant influence on the natural
frequencies of the rotating beam as the dimensionless rotating extension parameter l is large. The error for
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Fig. 5. Influence of the extension parameter l on the centrifugal stiffening force (m ¼ 1, y ¼ 301).

Fig. 6. Influence of dimensionless rotating extension parameter l and Coriolis force on the first two natural frequencies of a rotating beam

(m ¼ 1, Lz ¼ 35, y ¼ 0, ks ¼ 0.32693).

Table 4

The fundamental natural frequencies evaluated via four different approaches (m ¼ 1, y ¼ 0, Lz ¼ 35)

Parameter l Approach

Case A Case B Case C Case D

L L Error L Error L Error

0.2 9.4128 9.7122 3.18 9.6002 2.00 9.3045 1.15

0.6 21.9090 29.5040 34.67 26.0357 18.84 19.5493 10.77

1.0 26.8976 62.7494 133.3 42.7629 58.98 20.3084 24.50

Error ¼ ðcase X�case AÞ
case A

� 100%; X ¼ B;C;D.
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the natural frequencies of the beam without considering any one of the both factors will turn to be
considerable as the dimensionless rotating extension parameter l is large.

In Table 4, the discrepancy between the fundamental natural frequencies evaluated for different cases and
those evaluated via case A approach is illustrated. It can be found that when the dimensionless rotating
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Fig. 7. The first natural frequencies of a rotating beam evaluated by two different beam theories, using two different approaches cases A

and D (Lz ¼ 20, y ¼ 301, m ¼ 1, ks ¼ 0.32693).

Fig. 8. The second natural frequencies of a rotating beam evaluated by two different beam theories, using two different approaches cases

A and D (Lz ¼ 20, y ¼ 301, m ¼ 1, ks ¼ 0.32693).
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extension parameterl is large, the error is considerable. The natural frequencies evaluated for case D have the
smallest error, as expected.

In Figs. 7 and 8, using two different approaches, cases A and D, the first two natural frequencies of a
rotating beam evaluated by two different beam theories are shown. In the analysis, the Coriolis force effect is
taken into account. It can be found that when the dimensionless rotating extension parameter l is increased,
the difference between the first natural frequencies of a rotating Timonshenko beam considering two different
centrifugal stiffening forces is greater than that of a rotating beam when l is less than approximately 0.95. The
difference between the second natural frequencies of a rotating Timonshenko beam considering two different
centrifugal stiffening forces is less than that of a rotating beam.
8. Conclusions

By utilizing the Hamilton’s principle, three coupled governing differential equations for a rotating inclined
Timoshenko beam are derived. Both the extensional deformation and the Coriolis force effect are considered.
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An exact series solution of the system is developed. The frequency relations and analytical numerical results
have led to the following conclusions:
1.
 For two dynamic systems with the same physical parameters except the inclination angle and the hub
radius:
(a) If ma cos ya ¼ mb cos yb, the natural frequencies of two systems will be the same.
(b) If the hub radius is not zero and the inclination angle of the dynamic system is increased, the natural

frequencies decrease.
(c) If the hub radius is zero, the inclination angle will have no influence on the natural frequencies of the

dynamic system.
(d) If the inclination angle is 7901, the natural frequencies of the dynamic system will be independent with

the hub radius.

2.
 Both the extensional deformation and the Coriolis force will have very significant influence on the natural

frequencies of the rotating beam as the dimensionless rotating extension parameter l is large. The error for
the natural frequencies of the beam without considering any one of the both factors will increase as the
dimensionless rotating extension parameter l is increased. The error will turn to be considerable as the
dimensionless rotating extension parameter l is large.
3.
 The difference between the first natural frequencies of a rotating Timonshenko beam consid-
ering two different centrifugal stiffening forces is greater than that of a rotating beam when l
is less than approximately 0.95. The difference between the second natural frequencies of a rotating
Timonshenko beam considering two different centrifugal stiffening forces is less than that of a
rotating beam.

Acknowledgments

This research work was supported by the National Science Council of Taiwan, ROC under Grant NSC 92-
2751-B-006-012 and is gratefully acknowledged.
Appendix A. The coefficients of Eqs. (26)–(27)
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z24 ¼
1

z20

3a2

ksL
2
z

Np
0

� �
; z25 ¼

1

z20
1þ

a2

ksL
2
z

Np

� �
; z26 ¼ 0,

where z10 ¼ k3
s L6

z � k2
s L2

zða
2 þ L2Þ and z20 ¼ �2aLi; ði ¼

ffiffiffiffiffiffiffi
�1
p
Þ.

Appendix B. The coefficients ai of the governing equation (28)
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Appendix C. The coefficients of the boundary conditions (29)–(30)
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